

Welcome to Manifold’s documentation!

Contents:

	 Introduction

	Installation
	Ubuntu Linux

	Mac OS X

	Windows

	Install from sources (Ubuntu Linux)
	Uninstalling Source-based Install

	 Contribute
	Development process
	Steps to follow

	Style

	Reduce Code Duplication

	Write Tests
	Test coverage

	Debugging Manifold
	Meaningful backtraces

	Code Check
	Static Code Check

	API

Indices and tables

	Index

	Module Index

	Search Page

What is Manifold?

Manifold is an open source library that allows to load RNDF road network files.

	What programming language can I use to interface Manifold?

C++ is our native implementation and so far the only way to use the library.

Installation

Instructions to install Manifold on all the platforms supported: major Linux distributions, Mac OS X and Windows.

Ubuntu Linux

Setup your computer to accept software from packages.osrfoundation.org:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable
`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install Manifold:

sudo apt-get update
sudo apt-get install libmanifold0-dev

Mac OS X

Manifold and several of its dependencies can be compiled on OS X with
Homebrew [http://brew.sh/] using the
osrf/simulation tap [https://github.com/osrf/homebrew-simulation]. Manifold is straightforward to install on Mac OS X 10.9 (Mavericks) or higher.
Installation on older versions requires changing the default standard library
and rebuilding dependencies due to the use of c++11. For purposes of this
documentation, I will assume OS X 10.9 or greater is in use. Here are the
instructions:

Install Homebrew, which should also prompt you to install the XCode command-line tools:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Run the following commands:

brew tap osrf/simulation
brew install manifold0

Windows

At this moment, compilation has been tested on Windows 7 and 8.1 and is
supported when using
Visual Studio 2013 [https://www.visualstudio.com/downloads/]. Patches for
other versions are welcome.

This installation procedure uses pre-compiled binaries in a local workspace. To make things easier, use a MinGW shell for your editing work (such as the
Git Bash Shell [https://msysgit.github.io/] with
Mercurial [http://tortoisehg.bitbucket.org/download/index.html]), and only
use the Windows cmd for configuring and building. You might also need to
disable the Windows firewall [http://windows.microsoft.com/en-us/windows/turn-windows-firewall-on-off#turn-windows-firewall-on-off=windows-7].

Make a directory to work in, e.g.:

mkdir manifold-ws
cd manifold-ws

Clone and prepare the Ignition Math dependency:

hg clone https://bitbucket.org/ignitionrobotics/ign-math -b ign-math2
cd ign-math
mkdir build

In a Windows Command Prompt, load your compiler setup, e.g.:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat" amd64

In the Windows Command Prompt, configure and build:

cd ign-math\build
..\configure
nmake install

Clone Manifold:

cd ..\..\
hg clone https://bitbucket.org/osrf/manifold
cd manifold

Configure and build:

mkdir build
cd build
..\configure
nmake
nmake install

You should now have an installation of ign-manifold in manifold-ws/manifold/build/install.

Now build the examples:

cd ..\example
mkdir build
cd build
..\configure
nmake

Now try an example. In one Windows terminal run:

rndf_info <_your_rndf_file>

Install from sources (Ubuntu Linux)

For compiling the latest version of Manifold you will need an Ubuntu
distribution equal to 14.04 (Trusty) or newer.

Make sure you have removed the Ubuntu pre-compiled binaries before installing
from source:

sudo apt-get remove libmanifold0-dev

Setup your computer to accept software from packages.osrfoundation.org:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable
`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

Setup keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

Install prerequisites. A clean Ubuntu system will need:

sudo apt-get update
sudo apt-get install cmake pkg-config python ruby-ronn

Clone and prepare the Ignition Math dependency:

hg clone https://bitbucket.org/ignitionrobotics/ign-math -b ign-math2 /tmp/ign-math
cd /tmp/ign-math
mkdir build
cd build

Configure and build:

cmake ..
make -j4
sudo make install

Clone the repository into a directory and go into it:

hg clone https://bitbucket.org/osrf/manifold /tmp/manifold
cd /tmp/manifold

Create a build directory and go there:

mkdir build
cd build

Configure Manifold (choose either method a or b below):

	Release mode: This will generate optimized code, but will not have debug symbols. Use this mode if you don’t need to use GDB.

cmake ../

Note: You can use a custom install path to make it easier to switch between source and debian installs:

cmake -DCMAKE_INSTALL_PREFIX=/home/$USER/local ../

B. Debug mode: This will generate code with debug symbols. Manifold
will run slower, but you’ll be able to use GDB.

cmake -DCMAKE_BUILD_TYPE=Debug ../

The output from cmake ../ may generate a number of errors and warnings about
missing packages. You must install the missing packages that have errors and
re-run cmake ../. Make sure all the build errors are resolved before
continuing (they should be there from the earlier step in which you installed
prerequisites).

Make note of your install path, which is output from cmake and should look something like:

-- Install path: /home/$USER/local

Build Manifold:

make -j4

Install Manifold:

sudo make install

If you decide to install Manifold in a local directory you’ll need to modify your
LD_LIBRARY_PATH:

echo "export LD_LIBRARY_PATH=<install_path>/local/lib:$LD_LIBRARY_PATH" >> ~/.bashrc

Now build the examples:

cd ../
mkdir build
cd build
cmake ..
make

Now try an example. In a terminal run:

rndf_info <_your_rndf_file>

Uninstalling Source-based Install

If you need to uninstall Manifold or switch back to a debian-based
install when you currently have installed the library from source, navigate to
your source code directory’s build folders and run make uninstall:

cd /tmp/manifold/build
sudo make uninstall

How to contribute

Manifold is an open source project based on the Apache License
Version 2.0, and is maintained by hardworking developers for everyone’s benefit.
If you would like to contribute software patches, read on to find out how.

Development process

We follow a development process designed to reduce errors, encourage
collaboration, and make high quality code. The process may seem rigid and
tedious, but every step is worth the effort (especially if you like
applications that work).

Steps to follow

	Are you sure? Has your idea already been done, or maybe someone is already working on it?

Check the issue tracker [https://bitbucket.org/osrf/manifold].

2. Fork Manifold [https://bitbucket.org/osrf/manifold/fork]. This will create your own personal copy of the project. All of your
development should take place in your fork.

	Work out of a branch:

hg branch my_new_branch_name

Always work out of a new branch, never off of default. This is a good habit to get in, and will make your life easier. If you’re solving an issue, make the
branch name issue_ followed by the issue number. E.g.: issue_23.

	Write your code.

This is the fun part.

	Write tests.

A pull request will only be accepted if it has tests. See the Test coverage section below for more information.

	Compiler warnings.

Code must have zero compile warnings. This currently only applies to Linux.

	Style.

A tool is provided to check for correct style. Your code must have no errors
after running the following command from the root of the source tree:

sh tools/code_check.sh

The tool does not catch all style errors. See the Style section below for more
information.

	Tests pass.

There must be no failing tests. You can check by running make test in your
build directory.

	Documentation.

Document all your code. Every class, function, member variable must have
doxygen comments. All code in source files must have documentation that
describes the functionality. This will help reviewers, and future developers.

	Review your code.

Before submitting your code through a pull request, take some time to review
everything line-by-line. The review process will go much faster if you make
sure everything is perfect before other people look at your code. There is a
bit of the human-condition involved here. Folks are less likely to spend time
reviewing your code if it’s bad.

	Small pull requests.

A large pull request is hard to review, and will take a long time. It is worth
your time to split a large pull request into multiple smaller pull requests.
For reference, here are a few examples:

	Small, very nice [https://bitbucket.org/osrf/gazebo/pull-request/1732]

	Medium, still okay [https://bitbucket.org/osrf/gazebo/pull-request/1700]

	Too large [https://bitbucket.org/osrf/gazebo/pull-request/30]

	Pull request [https://bitbucket.org/osrf/manifold/pull-request/new].

Submit a pull request when you ready.

	Review.

At least two other people have to approve your pull request before it can be merged. Please be responsive to any questions and comments.

	Done, phew.

Once you have met all the requirements, you’re code will be merged. Thanks for improving Manifold!

Style

In general, we follow Google’s style guide [https://google-styleguide.googlecode.com/svn/trunk/cppguide.html]. However, we add in some extras.

	``this`` pointer

	All class attributes and member functions must be accessed using the
this-> pointer. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-40].

	Underscore function parameters

	All function parameters must start with an underscore. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-77].

	Do not cuddle braces

	All braces must be on their own line. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-131].

	Multi-line code blocks

	If a block of code spans multiple lines and is part of a flow control statement, such as an if, then it must be wrapped in braces. Here is an
example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Base.cc#cl-249]

	++ operator

	This occurs mostly in for loops. Prefix the ++ operator, which is slightly more efficient than postfix in some cases [http://programmers.stackexchange.com/questions/59880/avoid-postfix-increment-operator].

	PIMPL/Opaque pointer

	If you are writing a new class, it must use a private data pointer. Here is
an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/World.hh?at=default#cl-479], and you can read more here [https://en.wikipedia.org/wiki/Opaque_pointer].

	const functions

	Any class function that does not change a member variable should be marked as
const. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-175].

	const parameters

	All parameters that are not modified by a function should be marked as
const. This applies to parameters that are passed by reference, pointer, and value. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217].

	Pointer and reference variables

	Place the * and & next to the variable name, not next to the type.
For example: int &variable is good, but int& variable is not. Here is an example [https://bitbucket.org/osrf/gazebo/src/default/gazebo/physics/Entity.cc?at=default#cl-217].

	Camel case

	In general, everything should use camel case. Exceptions include protobuf variable names.

	Class function names

	Class functions must start with a capital letter, and capitalize every word.

void MyFunction(); : Good

void myFunction(); : Bad

void my_function(); : Bad

	Variable names

	Variables must start with a lower case letter, and capitalize every word thereafter.

int myVariable; : Good

int myvariable; : Bad

int my_variable; : Bad

Reduce Code Duplication

Check to make sure someone else is not currently working on the same
feature, before embarking on a project to add something to Manifold.
Check the issue tracker [https://bitbucket.org/osrf/manifold/issues] looking for issues with similar ideas.

Write Tests

All code should have a corresponding unit test. Manifold uses GTest [http://code.google.com/p/googletest] for unit testing.

Test coverage

The goal is to achieve 100% line and branch coverage. However, this is not
always possible due to complexity issues, analysis tools misreporting
coverage, and time constraints. Try to write as complete of a test suite as
possible, and use the coverage analysis tools as guide. If you have trouble
writing a test please ask for help in your pull request.

Manifold has a build target called make coverage that will produce a code coverage report. You’ll need lcov [http://ltp.sourceforge.net/coverage/lcov.php] installed.

	In your build folder, compile Manifold with

-DCMAKE_BUILD_TYPE=Coverage:

cmake -DCMAKE_BUILD_TYPE=Coverage ..\
make

	Run a single test, or all the tests:

make test

	Make the coverage report:

make coverage

	View the coverage report:

firefox coverage/index.html

Debugging Manifold

Meaningful backtraces

In order to provide meaningful backtraces when using a debugger, such as GDB, Manifold should be compiled with debugging support enabled. When using the
ubuntu packages, specially the -dbg package, this support is limited but
could be enough in most of the situations. This are the three level of traces which can be obtained:

	Maximum level of debugging support

	This only can be obtained compiling Manifold from source and setting the CMAKE_BUILD_TYPE to DEBUG. This will set up no optimizations and debugging symbols. It can be required by developers in situations specially difficult to reproduce.

	Medium level of debugging support

	This can be obtained installing the libmanifold0-dbg package or compiling Manifold from source using the RELWITHDEBINFO CMAKE_BUILD_TYPE mode (which is the default if no mode is provided). This will set up -O2 optimization level but provide debugging symbols. This should be the default when firing up gdb to explore errors and submit traces.

	Minimum level of debugging support

	This one is present in package versions (no -dbg package present) or compiling Manifold from source using the RELEASE CMAKE_BUILD_TYPE option. This will set up the maximum level of optimizations and does not provide any debugging symbol information. This traces are particularly difficult to follow.

Code Check

Code pushed into the repository should pass a few simple tests. It is also
helpful if patches submitted through bitbucket pass these tests. Passing these tests is defined as generating no error or warning messages for each of the following tests.

Static Code Check

Static code checking analyzes your code for bugs, such as potential memory
leaks, and style. The Manifold static code checker uses cppcheck, and a modified cpplint. You’ll need to install cppcheck on your system. Ubuntu users can
install via:

sudo apt-get install cppcheck

To check your code, run the following script from the root of the Manifold
sources:

sh tools/code_check.sh

It takes a few minutes to run. Fix all errors and warnings until the output
looks like:

Total errors found: 0

API

Please, visit this link [https://s3.amazonaws.com/osrf-distributions/manifold/api/0.0.1/index.html] for version 0.x.

Index

 nav.xhtml

 Table of Contents

 		Welcome to Manifold's documentation!

 		 Introduction

 		Installation

 		Ubuntu Linux

 		Mac OS X

 		Windows

 		Install from sources (Ubuntu Linux)

 		Uninstalling Source-based Install

 		 Contribute

 		Development process

 		Steps to follow

 		Style

 		Reduce Code Duplication

 		Write Tests

 		Debugging Manifold

 		Meaningful backtraces

 		Code Check

 		Static Code Check

 		API

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

